Entrainment of a population of synthetic genetic oscillators.

نویسندگان

  • Octavio Mondragón-Palomino
  • Tal Danino
  • Jangir Selimkhanov
  • Lev Tsimring
  • Jeff Hasty
چکیده

Biological clocks are self-sustained oscillators that adjust their phase to the daily environmental cycles in a process known as entrainment. Molecular dissection and mathematical modeling of biological oscillators have progressed quite far, but quantitative insights on the entrainment of clocks are relatively sparse. We simultaneously tracked the phases of hundreds of synthetic genetic oscillators relative to a common external stimulus to map the entrainment regions predicted by a detailed model of the clock. Synthetic oscillators were frequency-locked in wide intervals of the external period and showed higher-order resonance. Computational simulations indicated that natural oscillators may contain a positive-feedback loop to robustly adapt to environmental cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise Induces the Population-Level Entrainment of Incoherent, Uncoupled Intracellular Oscillators.

Intracellular oscillators entrain to periodic signals by adjusting their phase and frequency. However, the low copy numbers of key molecular players make the dynamics of these oscillators intrinsically noisy, disrupting their oscillatory activity and entrainment response. Here, we use a combination of computational methods and experimental observations to reveal a functional distinction between...

متن کامل

Dynamical Principles of Two-Component Genetic Oscillators

Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental p...

متن کامل

Marching along to an Offbeat Drum: Entrainment of Synthetic Gene Oscillators by a Noisy Stimulus.

Modulation of biological oscillations by stimuli lies at the root of many phenomena, including maintenance of circadian rhythms, propagation of neural signals, and somitogenesis. While it is well established that regular periodic modulation can entrain an oscillator, an aperiodic (noisy) modulation can also robustly entrain oscillations. This latter scenario may describe, for instance, the effe...

متن کامل

Multiple oscillators provide metastability in rhythm generation.

Biological rhythms such as cardiac and circadian rhythms arise from activity of multiple oscillators with dispersed intrinsic frequencies. It has been proposed that a stable population rhythm, fundamental to normal physiological processes, can be achieved in these systems by synchronization, through mutual entrainment, of individual oscillators. Mutual entrainment, however, is unlikely to be th...

متن کامل

Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells

Understanding how biochemical networks lead to large-scale nonequilibrium self-organization and pattern formation in life is a major challenge, with important implications for the design of programmable synthetic systems. Here, we assembled cell-free genetic oscillators in a spatially distributed system of on-chip DNA compartments as artificial cells, and measured reaction-diffusion dynamics at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 333 6047  شماره 

صفحات  -

تاریخ انتشار 2011